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Abstract

The Hausman test statistic in panel data models is asymptotically pivotal

under the null hypothesis. It could therefore be refined using the bootstrap

resampling technique. Edgeworth expansion shows that coverage of a

bootstrap version of the Hausman test is second-order correct. The asymptotic

vis-à-vis the bootstrap version of Hausman test are compared by Monte Carlo

simulations. Results show that the bootstrap version has around 20% lower

error in coverage at the null hypothesis. If size-corrected, it also outperforms

the power of the asymptotic Hausman test by almost 10% if fixed effects are

”weak”. Results are robust on parameters of data generating process.
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1 Introduction

Empirical work with panel data requires a decision on how to treat individual

specific effects: whether to use a fixed or random effects model. The decision

depends on the correlation between unobserved effect variable and explanatory

(independent) variables. The Hausman specification test (Hausman, 1978) is

the standard test for discriminating between fixed versus random effects in

panel data models. It is asymptotically pivotal under the null hypothesis.

In small samples, the precision of quantiles and coverage, if determined from

asymptotic distribution of the Hausman test statistic (HT), could be

considerably distorted. Bootstrapping the HT could significantly reduce

imprecision, because the statistic is asymptotically pivotal. Edgeworth

expansion of the HT could reveal the size of potential corrections (see Hall,

1992, for general discussion on bootstrap and Edgeworth expansion).

The potential advantage of the bootstrap version of the HT would not be

limited to the null hypothesis only. The known result of Davidson and

MacKinnon (2003), namely, shows that the relative advantage of the bootstrap

version of the test (in comparison to the asymptotic version of the test) does

not depend on alternatives. The theoretical advantage of the bootstrap version

of the test (vis-à-vis the asymptotic version), if proved for the null hypothesis,

could therefore be directly extended to all alternative hypotheses.

Bootstrapping regression models already has firm theoretical foundation
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(Freedman, 1981), while several resampling algorithms for panel data models

were suggested by Andersson and Karlsson (2001).

In the present paper, small sample performance of the bootstrap version of the

HT is compared to those of the asymptotic version. To document the

advantage of bootstrapping the Hausman test statistic and to study the speed

of convergence of both versions of the statistic, an Edgeworth expansion of the

Hausman test statistic distribution is derived for the analysed model.

Empirical results are evaluated by a Monte Carlo experiment on the simple

panel data model. Robustness of results is empirically documented for an

assumed distribution of individual-specific effect and idiosyncratic error,

variance of idiosyncratic error, heteroscedasticity of idiosyncratic error and the

size of the correlation between the explanatory (independent) variable and

individual-specific effect in the alternative hypothesis.

The structure of the rest of the paper is as follows: In Section 2 we introduce

the error-component regression model. In the same section we also derive the

Edgeworth expansion for both versions of the HT and give specific theoretical

results for the analysed (simplified) model. Section 3 describes the design of

the experiment. Details on bootstrap technique and Monte Carlo simulations

are given. Specification of a baseline model and alternatives are described as

well. In Section 4 experimental results on the size and power of the asymptotic

and bootstrap versions of the HT are given for baseline and alternative

error-component regression models. In the same section possible theoretical

explanation of empirical results is provided. Section 5 concludes the paper. An
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Appendix contains the proofs.

2

2.1 Hausman test for panel data

In the error-component regression model

yit = β0 + xitβ + ci + uit, (1)

xit is (1×K), β is (K × 1), ci and uit are i.i.d., cov(ci, uit) = 0, var(ci) = σ2
c ,

var(uit) = σ2
u, i = 1, 2, ..., N and t = 1, 2, ..., T .

The Hausman specification test for the error-component regression model is

based on the (Mahalanobis) distance between fixed (β̂F E) and random (β̂RE)

effects estimators. Both, β̂F E and β̂RE , estimators are consistent under the

null hypothesis

H0 : E(ci|xi) = 0.

For the alternative hypothesis (specified as in Arellano, 1993, p.90)

H1 : E(ci|xi) = E(ci|x̄i) = x̄T
i γ,

only β̂F E remains consistent. The test statistic is distributed asymptotically

as χ2
K under the null hypothesis, where K is the number of unknown
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parameters. Under the alternative, we have γ 6= 0 and the test statistic is

asymptotically distributed as noncentral χ2
K .

2.2 Edgeworth expansion of the Hausman test statistic

Edgeworth expansion was originally suggested for simple sample moments, but

it also has been derived for more sophisticated statistics, as for example,

smooth functions of sample moments (Bhattacharya and Ghosh, 1978), linear

regression models (Qumsiyeh, 1990, 1994, 1997 and Hall, 1992) and nonlinear

regression models (Ivanov and Zwanzig, 1983 and 2002). None of these

generalizations apply directly to the Hausman statistic. However, Edgeworth

expansion for regression models can be applied to the HT with some

modifications.

In the following two propositions, the basic characteristics of Edgeworth

expansion of the (bootstrapped) Hausman test statistic distribution necessary

for the discussion of empirical results are given. In the rest of the paper,

Edgeworth expansion of only the t-percentile version of the HT are discussed,

without special notice.

Proposition 1 Assume that in model (1), Cramér’s condition

lim sup
ξ→∞

|E(exp(jξci))| < 1, lim sup
ξ→∞

|E(exp(jξuit))| < 1, (j =
√
−1),

and

E(|ci|l) <∞, E(|uit|l) <∞ for l ≤ 10
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holds for errors ci and uit, i = 1, ..., N , t = 1, ..., T . Suppose also that vectors

of the predetermined variables {xit : i = 1, ..., N , t = 1, ..., T} represent the

sequence of independent realizations of a random vector X with

E(||X||m) <∞, m ≤ 5, |cov(X)| > 0. Then, the distribution of the HT under

the null hypothesis permits the Edgeworth expansion

∫
E

(
1 +

2∑
i=1

N−i/2Qi(w)

)
φ(w)dw (2)

with error O(N−3/2) when N →∞; Qi denote polynomials of degree 3i with

the same parity as i; if E is sphere in RK only Q2 matters. If moment

conditions are strengthened to high enough l, the bootstrap version of the HT

under the null hypothesis permits the Edgeworth expansion

∫
E

(
1 +

2∑
i=1

N−i/2Q̂i(w)

)
φ(w)dw

with error O(N−3/2) and second-order correct coverage when N →∞; Q̂i

denote polynomials as in (2), only distribution parameters, if they figure in

polynomials Qi, are replaced by consistent estimates.

In the Appendix, it is shown that existing theory on Edgeworth expansion of

regression models (see Hall, 1992) can be applied to prove the proposition.

Let us add that stated Cramér’s condition holds if the distribution of ci (uit)

is nonsingular (for example, if it possesses proper density function).

In the case of the baseline model studied in the experiment, an even stronger

result on the coverage of the bootstrap version of the HT could be proved.
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Proposition 2 In the error-component regression model (1) with normally

distributed ci and uit, K = 1, and n = NT , the bootstrap version of the

Hausman test statistics is second-order correct; that is, the size of the bootstrap

version of the HT is correct including Edgeworth terms of order n−1. If ξ2α is

α quantile of the χ2 -distribution for nominal size α, then the effective size of

the test equals

αeff = α+
2
n

(
ξα

(
2 +

1
4
(ξ2α − 3)

)
φ(ξα)

)
+O(n−3/2), (3)

where φ(ξα) is the value of the density function for the standardized normal

variable in ξα.

The proposition is proved in the Appendix.

Because of the Davidson and MacKinnon result (2003), the precision of the

coverage of the bootstrapped statistic under the null hypothesis can be

extended to all alternatives! In the analysed baseline and alternative models,

therefore, the coverage of the bootstrap version of the HT is second-order

correct.

3 Design of the simulation experiment

3.1 Model variants

Three groups of model variants are analysed.
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In the main group, baseline and several alternative models are compared.

Each alternative differs from the baseline model only in one parameter of the

data generating process. Baseline and alternative models are simulated with

and without fixed effects.

In all variants from the main group, the panel has 25 cross-section units and

10 time observations. Correlation between the time-averaged explanatory

variable (for every cross-section unit) and the individual specific effect equals

0.5 when simulated with fixed effects and, obviously, 0.0 if simulated without

fixed effects.

Specification of model characteristics for the model variants from the main

group is presented in Table 1. Every line gives parameters for one variant. The

main characteristic (difference vis-à-vis the baseline model) is given in the first

column as an indicator of the corresponding variant. In other columns,

analysed characteristics are given - one characteristic per column.

In the second and third columns, distributions of individual-specific effect and

idiosyncratic error are given, respectively. The number of explanatory

variables is presented in the fourth column and denoted by K. The generating

process for explanatory variable(s) is described in the fifth and sixth column.

The cross-section heteroscedasticity of uit is defined so that half of the

cross-section units have variance equal to 0.5 and the other half equal to 1. In

Table 1, the distribution of uit is therefore denoted by N(0, 0.75), when

heteroscedasticity is present.

8



To study more thoroughly the effects of ”fixed effects intensity” and

magnitude of nominal size on the relative advantage of bootstrap vis-à-vis

asymptotic versions of the HT, two additional groups of model variants are

analysed. In the first group, the correlation between the time-averaged

explanatory variable and individual specific effect (”fixed effects intensity”)

takes the values ±0.7,±0.5,±0.3 and 0; all other parameters are equal, as in

the baseline model. In the second group of alternative models, the analysed

magnitude of nominal size takes the values 0.05, 0.10, 0.15 and 0.20; other

parameters are again equal, as in the baseline model.

3.2 Bootstrap procedure

A model-based non-parametric bootstrap was applied to the one-way error

component regression model with individual specific effects, as proposed by

Andersson and Karlsson (2001). Bootstrap samples are drawn with

replacements from N individual specific components (ci), as well as from NT

idiosyncratic error terms (uit).

Because the vector of parameters β is not known, the consistent estimate β̂ is

used to obtain both residual components according to

ûit = (yit − ȳi)− (xit − x̄i)β̂, and ĉi = ȳi − x̄iβ̂.

Once the bootstrap samples of residual components are obtained, values for y∗it

are generated by model (1). Then parameters of the model and bootstrap
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values of the Hausman statistic are calculated. Repeating the generation of

bootstrap samples and computing the HT value in each bootstrap repetition

gives the distribution of the bootstrapped HT statistic.

Heuristically speaking, non-parametric bootstrap resampling of the error

components corresponds to the basic idea of the Hausman test. The very

resampling of errors, namely, ”disconnects” the individual-specific effect

component and explanatory variables.

3.3 Monte Carlo simulations

Monte Carlo simulation is performed to evaluate the size and power of

asymptotic and bootstrap versions of the HT for all model variants. The size

of both versions of the HT is analysed on the model generated without fixed

effects, and power on the (otherwise equal) model generated with fixed effects.

Monte Carlo simulation of the particular model variant is made in one shot.

That is, in every run, asymptotic and bootstrap versions of the HT are

calculated. First, all runs for the model without fixed effects are completed;

then, runs for the (otherwise equal) model with fixed effects are made.

In order to achieve comparability of power between two versions of the HT,

the size-corrected power of the bootstrapped test is used (see, Davidson and

MacKinnon, 2003). Therefore, at every run of a particular Monte Carlo

simulation, when analysing the model with fixed coefficients, the nominal size

of the bootstrapped version of the HT is corrected to the effective size of the
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asymptotic version of the HT, calculated in the same Monte Carlo simulation,

after all runs for the (otherwise equal) model without fixed effects are made.

3.4 Monte Carlo parameters

The number of runs in a particular Monte Carlo simulation is set to 10,000.

This number was determined on the basis of experimental evidence. Figure 1

shows the results for size of two simulations of the model with the same

data-generating process. Heuristically, convergence of both experiments is

attained at 10,000 runs. The same number of runs was also used in the paper

of Andersson and Karlsson (2001).

Davidson and MacKinnon (2000) show that, with bootstrapping, 399

replications are about the minimum for a test at the 0.05 level in order to avoid

a power loss of more than 1%. The number of bootstrap replications should be

chosen so that α(B + 1) is an integer, if the test is to be exact. However, in

our study, the difference between 399 and 400 replications was within the

convergence deviation illustrated in Figure 13. Empirical distribution of the

Hausman statistic is generated by 400 bootstrap replications.

An average Monte Carlo simulation (resulting in an empirical distribution of

the asympthotic and bootstrap versions of the HT, for models with and

without fixed coefficients) took about 170 hours on a 1Ghz PC with 256Mb of

RAM in the Matlab environment.
3Corresponding results are available from the authors upon request.
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4 Discussion of empirical reults

4.1 Results

The size and power of asymptotic and bootstrap versions of the HT for

baseline and alternative models are given in Table 2. Model variants are

indicated in the first column.

The size of asymptotic and bootstrap versions of the HT exceed nominal size

in all model variants. Relative error in the coverage-(effective)size of the

asymptotic test is approximately 20% larger than for the boostrap test. The

size-corrected power of the bootstrap test is almost the same as the power of

the asymptotic test.

Sensitivity of size and power on changes of DGP parameters is small. Only

increasing the variance of idiosyncratic error has a slight effect on

deterioration of power. Changes in analysed parameters do not cause any

visible differential effect in size or power of the asymptotic vis-à-vis the

bootstrap version of the HT.

Table 3 shows the effects of nominal size magnitude on coverage (size and

power) of both versions of the HT. For all cases, the size of the asymptotic

version exceeds that of the bootstrap version of the HT. The asymptotic test

also systematically overshoots nominal size, while the bootstrap version of the

HT does not. Reduction of the error in coverage for the bootstrapped HT is

largest for the nominal size 0.1. Differences in power between asymptotic and
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size-corrected bootstrap versions of the HT are negligible for all analysed

nominal sizes.

The power function of the bootstraped version of the HT is shown in Figure 2.

Its position and shape indicate good power characteristics.

Table 4 shows the influence of correlation between the time-averaged

explanatory variable and individual-specific effect on power of the HT. This,

therefore, illustrates the importance of the ”intensity of fixed effects” for the

relative power of bootstrap vis-à-vis asymptotic versions of the HT. Relative

power of the bootstrap (in comparison to the asymptotic) version of the HT is

also illustrated (with a fitted curve) for the extended sample of variants in

Figure 34.

The power of asymptotic and bootstrapped versions of the HT is, as

heuristically expected, symmetric and increases approximately with the square

of the correlation. The relative advantage of the bootstrap version of the HT

is greater for smaller absolute values of the correlation, but the increase is not

monotone, as Figure 3 demonstrates. The bootstrap version of the HT

outperforms the asymptotic version to the greatest extent around an absolute

correlation of 0.1, where the size-corrected power of the bootstrap version is

almost 10% higher than the power of the asymptotic version of the HT.
4Because of the time-consuming computation, additional Monte Carlo simulations (except

those already presented in Table 4) are calculated with only 5000 runs.
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4.2 Discussion

The bootstrap version of the HT outperforms the asymptotic version for all

model variants studied. Coverage error is reduced from around 0.012, for

asymptotic HT, to around 0.003 for the bootstrap verison, for null hypothesis

and nominal size 0.05. The correction term from the Edgeworth expansion

(0.004) accounts for approximatelly half of the error reduction.

Power differences between asymptotic and size-corrected bootstrap versions of

the HT are negligible. Such empirical findings are in line with the theoretical

results of Davidson and MacKinnon (2003).

The advantage of the bootstrap version of the HT is robust on studied DGP

parameters. Such empirical results can be, heuristically speaking, expected,

because Edgeworth correction (including the second-order term for

bootstrapped HT distribution in the analysed model) does not depend on any

DGP parameter.

In the empirical experiment, reduction of error in coverage in the

bootstrapped HT (in comparison with the asymptotic version of the HT)

depends on the magnitude of nominal size. The highest value is attained at

0.1. Again, Edgeworth expansion terms can be used for heuristic

interpretation of empirical results. But, illustration is not precise enough. The

correction term in Edgeworth expansion (2) confirms, that reduction of error

in coverage does depend on nominal size. The maximum of the correction

term in Edgeworth expansion (2) is, namely, attained at ξ2α = 1.45, which
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corresponds to the nominal size 0.2. Probably, third term in Edgeworth

expansion would have to be taken into account also.

Differences in the power of size-corrected bootstrapped HT and the asymptotic

version of the HT are negligible in the main group of analysed model variants

(including baseline model). For these alternatives, however, correlation of the

time-averaged explanatory variable and individual-specific effect is high (equal

to 0.5). Analysing the ”intensity of fixed effects” more in detail shows the

potential additional advantage of the bootstrap version of HT vis-à-vis the

asymptotic version of the HT. The empirical result shows that in the panel

data model with a weak ”intensity of fixed effects”, bootstrapped HT

significantly outperforms asymptotic HT, also on testing the alternative

hypothesis and after size correction. Namely, the power of the bootstrap test

is almost 10% higher than the power of the asymptotic test. Such relative

advantage of the bootstrapped HT ”near” the null hypothesis could be

explained by Davidson and MacKinnon result on drifting hypothesis (2003,

Theorem 1) if position of peaks on Figure 3 migrate (with n1/2) to 0.

Empirical verification of such possible explanation can be an incentive for

additional future research.

5 Conclusion

Using an asymptotic distribution of the Hausman specification test in the

error-component regression model entails considerable size and power

distortions in small samples. Because of pivotalness, bootstrapping the
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Hausman test would have to mitigate those distortions. Edgeworth expansion

shows that coverage of the bootstrap version of Hausman test is second-order

correct under the null hypothesis. Empirical results confirm theoretically

expected results. The bootstrap version of the Hausman statistic has

systematically lower error in coverage at the null hypothesis. The power of the

size-corrected bootstrap test and asymptotic tests differ only negligibly for

”normal” intensity of fixed effects. Such an empirical finding is in line with the

theoretical results of Davidson and MacKinnon. Advantages of bootstrapping

the Hausman test are greatest on the margin, when the ”intensity of fixed

effects” is weak (correlation of individual effects and time-averaged

explanatory variables is not high). Its power is almost 10% higher than in the

case of the asymptotic test. Relative performance of the bootstrap version of

the Hausman test are robust on distribution parameters of both components

of error.

A Appendix

Proof of Proposition 1 The error-component regression model can be

written in the form

y = β0 + Xβ + v (4)

where the vector of errors is distributed v ∼ N(0,Σ), Σ = σ2
u(

1
ψ2 P + Q), the

parameter ψ is defined by ψ = σu

(Tσ2
c+σ2

u)1/2 , P and Q are between and within

projectors (P = IN ⊗ J̄T ,Q = I−P), y is (NT × 1) vector, X is (NT ×K)

matrix of independent variables, and β is (K × 1) vector.
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Testing the null hypothesis (of random effects) with the HT in such model is

equivalent to the Wald test of the hypothesis that parameter θ is zero in the

model

y = β0 + Xβ + QXθ + v (5)

using the Aitkin estimator for θ (see equivalent transformation in Baltagi,

2001, page 66). Because sectoral errors vi = [ci + vi1, ci + vi2, ..., ci + viT ]T are

i.i.d. vectors, the error-component regression model (5) can be written in the

form

yi = β0 +Xiβ + (IT − J̄T)Xiθ + vi, cov(vi) = σ2
v

(
1
ψ2

JT +
(
IT − J̄T

))
(6)

where yi = [yi1,yi2, ...,yiT]T and Xi = [xT
i1,x

T
i2, ...,x

T
iT]T are cross-section

blocks of the dependent variable vector and explanatory variables matrix.

To multivariate multiparameter regression model (6) can be applied conclusions

of Hall (1992), section 4.3.6, on t-percentile testing (confidence) regions for

slope. Because the testing region for the Hausman test statistics is symmetric

and parameters of the second
(
N−1

)
term in the Edgeworth expansion of the

bootstrapped HT are correct with error of order O
(
N−1/2

)
, the conclusion on

the coverage follows. The application of theorem 5.4 from Hall (1992) in the

vector case also gives the existence of the Edgeworth expansion.

Proof of Proposition 2 Because errors are normally distributed, the

Hausman test is equivalent to the Wald test

y∗ = β∗0 + X∗β + X̃γ + w, (7)
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where y∗ = σuΣ−1/2y is (n× 1) vector, X∗ = σuΣ−1/2X is (n×K) matrix,

X̃ = QX is (n×K) matrix, and w ∼ N(0, σ2
u) is (n× 1) vector, and, of

course, n = NT (Baltagi, 2002, p.69). Because of Frisch-Waugh-Lovell

theorem testing the hypothesis on γ in model (7) is equivalent to testing in the

model

UMX∗y∗ = UMX∗X̃γ + v2 (8)

where MX∗ is projector on [e X∗]⊥ and U orthogonal matrix diagonalising

MX∗ . Errors v2 are i.i.d. and distributed according to N (0, σ2
u). Because

K = 1, the conclusions of Hall (1989) or Hall (1992) on the Edgeworth

expansion of the t-percentile statistic for the regression slope can be used in the

model (8).

Because the testing region (equivalent to the HT) for the hypothesis γ = 0 is

symmetric, odd terms in the Edgeworth expansion vanish. For coverage of the

HT, therefore, only the second term (out of the first three terms) matters in

the Edgeworth expansion, that is

q2(ξ) = −ξ
(
2 + 1

24 (κκZ + 6)(ξ2 − 3) + 1
72λλ

2
Z(ξ4 − 10ξ2 + 15)

)
and

q̂2(ξ) = −ξ
(
2 + 1

24 (κ̂κZ + 6)(ξ2 − 3) + 1
72 λ̂λ

2
Z(ξ4 − 10ξ2 + 15)

)

in the bootstrap version (see, Hall, 1992), where λ, κ are asymmetric and

skewness indicators of standardized error, λZ , κZ sample asymmetry and

skewness indicators for explanatory variable Z and λ̂, κ̂ sample version of

error moments. Because errors are normally distributed and sample moments
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converge (n−1/2) to population moments, for the known ψ only

q2(w) = −w(2 + 1
4 (w2 − 3))

matters in both version of Edgeworth expansion. Corresponding Edgeworth

correction is third order correct for t-percentile HT and second order correct

for the bootstrap version of HT.

Because the parameters of q2(w) are known (do not depend on any parameter

of the model), the conclusion of Propostion 2 follows.
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Table 1

Specification of the main group model variants

ci uit K x1it x2it + 0.8x2it−1

baseline model N(0, 0.5) N(0, 0.5) 1 N(0, 1) -

ci U(0, 0.5) U(0, 0.5) N(0, 0.5) 1 N(0, 1) -

uit U(0, 0.5) N(0, 0.5) U(0, 0.5) 1 N(0, 1) -

var(uit) = 1 N(0, 0.5) N(0, 1) 1 N(0, 1) -

cross -section

heterosced. uit N(0, 0.5) N(0, 0.75) 1 N(0, 1) -

2 explanat. var. N(0, 0.5) N(0, 0.5) 2 N(0, 1) N(0, 0.36)
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Table 2

Size and power of the Hausman test

size of testa power of test

asymptotic bootstrap asymptotic bootstrapb

baseline model 0.0622 0.0519 0.7771 0.7782

ci U(0, 0.5) 0.0637 0.0547 0.7653 0.7709

uit U(0, 0.5) 0.0620 0.0520 0.7680 0.7719

var(uit) = 1 0.0612 0.0534 0.7218 0.7205

cross -section

heterosced. uit 0.0606 0.0518 0.7458 0.7453

2 explanat. var. 0.0682 0.0527 0.5104 0.5087

aNominal size: α=0.05.
bPower of size-corrected bootstrap test.
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Table 3

Effects of nominal size magnitude on size and power of the

Hausman test

size of test power of test

asymptotic bootstrap asymptotic bootstrapa

α = 0.05 0.0622 0.0519 0.7771 0.7782

α = 0.10 0.1102 0.0967 0.8494 0.8469

α = 0.15 0.1647 0.1550 0.8960 0.8964

α = 0.20 0.2083 0.1994 0.9216 0.9212

aPower of size-corrected bootstrap test.
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Table 4

Effects of correlation (”fixed effects intensity”)

on power of the Hausman test

power of test

asymptotic bootstrapa

r = -0.7 0.9967 0.9969

r = -0.5 0.7621 0.7655

r = -0.3 0.3392 0.3455

r = 0 0.0622 0.0519

r = 0.3 0.3361 0.3404

r = 0.5 0.7771 0.7782

r = 0.7 0.9951 0.9953

aPower of size-corrected bootstrap test.
Remark: r = correlation between time-averaged
explanatory variable and individual-specific effect.
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Figure 1

Coverage-size convergence for bootstrap and asymptotic

versions of the HT
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Figure 2

Power as a function of size for the bootstrap version of the HT
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Figure 3
Relative power advantage of bootstrap Hausman testa

aSize-corrected bootstrap test.
Remark: Correlation between time averaged explanatory variable and
individual-specific effect.
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